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Path Planning

Given
I A robot (kinematic chain),
I obstacles,
I constraints (non-holonomic, manipulation),
I an initial configuration and
I goal configurations,

Compute a collision-free path satisfying the constraints from
the initial configuration to a goal configuration.
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Historical perspective

I 1998: Move3D,
I 2001: Creation of Kineo-CAM, transfer of Move3D,
I 2006: Release of KineoWorks-2, development of HPP

based on KineoWorks-2,
I 2013: kineo-CAM is bought by Siemens,
I December 2013: development of HPP open-source.

HPP



Introduction
Description of the software

Manipulation planning

Historical perspective

I 1998: Move3D,
I 2001: Creation of Kineo-CAM, transfer of Move3D,
I 2006: Release of KineoWorks-2, development of HPP

based on KineoWorks-2,
I 2013: kineo-CAM is bought by Siemens,
I December 2013: development of HPP open-source.

HPP



Introduction
Description of the software

Manipulation planning

Historical perspective

I 1998: Move3D,
I 2001: Creation of Kineo-CAM, transfer of Move3D,
I 2006: Release of KineoWorks-2, development of HPP

based on KineoWorks-2,
I 2013: kineo-CAM is bought by Siemens,
I December 2013: development of HPP open-source.

HPP



Introduction
Description of the software

Manipulation planning

Historical perspective

I 1998: Move3D,
I 2001: Creation of Kineo-CAM, transfer of Move3D,
I 2006: Release of KineoWorks-2, development of HPP

based on KineoWorks-2,
I 2013: kineo-CAM is bought by Siemens,
I December 2013: development of HPP open-source.

HPP



Introduction
Description of the software

Manipulation planning

Historical perspective

I 1998: Move3D,
I 2001: Creation of Kineo-CAM, transfer of Move3D,
I 2006: Release of KineoWorks-2, development of HPP

based on KineoWorks-2,
I 2013: kineo-CAM is bought by Siemens,
I December 2013: development of HPP open-source.

HPP



Introduction
Description of the software

Manipulation planning

Main features

I Numerical constraints at the core of the model
I quasi-static equilibrium
I object grasp and placement
I explicit and implicit constraints

I no a priori discretization of paths
I evaluation calls constraint projection
I constrained paths need to be checked for continuity (class

hpp::core::PathProjector)
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Overview of the architecture

Modular: collection of packages
I installation and dependencies managed by cmake and a

git submodule: git://github.com/jrl-umi3218/jrl-cmakemodules.git,
I programmed in C++,
I controlled via python
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Software Development Kit
Packages implementing the core infrastructure
I Kinematic chain with geometry

I pinocchio: implementation of kinematic chain with
geometry,

I tree of joints (Rotation, Translation, SE3: vector +
unit-quaternions),

I moving hpp::fcl::CollisionObjects,
I forward kinematics,
I joint Jacobians,
I center of mass and Jacobian,
I URDF, SRDF parser.

I Numerical constraints
I hpp-constraints: numerical constraints

I implicit f (q) = (≤)0,
I explicit qout = f (qin),
I numerical solvers based on Newton-Raphson.
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Newton-Raphson algorithm

Constraints
I quasi-static

equilibrium (15)
I both hands hold the

placard (10)

Goal: Generate a configuration satisfying the constraints.
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Shoot random configuration
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Newton-Raphson algorithm

Constraints
I quasi-static

equilibrium (15)
I both hands hold the

placard (10)

Result: a configuration that satisfies the constraints (up to given threshold).
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Software Development Kit

Packages implementing the core infrastructure
I Path planning

I hpp-core: definition of basic classes,
I path planning problem,
I path planning solvers (RRT),
I path optimizers (random shortcut),
I path projector (random shortcut),
I path validation (discretized and continuous),
I steering methods (straight interpolation)
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Extensions

Packages implementing other algorithms via plugins in
hpp-corbaserver

I hpp-manipulation: manipulation planning (see next
section),

I any extension for your application.

HPP



Introduction
Description of the software

Manipulation planning

Extensions

Packages implementing other algorithms via plugins in
hpp-corbaserver

I hpp-manipulation: manipulation planning (see next
section),

I any extension for your application.

HPP



Introduction
Description of the software

Manipulation planning

Python control

hpp-corbaserver: python scripting through CORBA
I embed hpp-core into a CORBA server and expose

services through 3 idl interfaces:
I Robot load and initializes robot,
I Obstacle load and build obstacles,
I Problem define and solve problem.

I Implement python classes to help user call CORBA
services
I Robot automatize robot loading,
I ProblemSolver definition problem helper.
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Python control

Extensions through plugins in hpp-corbaserver

I hpp-manipulation-corba: control of manipulation
planning specific classes and algorithms.
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Visualization through gepetto-gui

Implemented by package hpp-gepetto-viewer.
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Manipulation

Class of problem containing:
I A robot: actuated DOFs
I Objects: unactuated DOFs

A solution will be a succession of motion of two types:
I The robot moves without constraints. Objects do not move.
I The robot moves while grasping the object.
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Manipulation

2 states:

Not holding

Object
fixed

Holding

Grasp

Ungrasp

Keep the
grasp
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Constraint
Definition
A function f ∈ D1(C,Rm).

Foliation
A leaf of a constraint f is defined by:

Lf0(f ) = {q ∈ C|f (q) = f0}

where f0 is called the right hand side of the constraint.

Projection
Using a Newton Descent algorithm:

qrand |f (qrand) 6= f0 ⇒ qproj |f (qproj) = f0
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Constraint

Two types of constraints:

Configuration
Only one leaf is interesting: L0(f ).

Motion
A leaf also represents reachability space.
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Foliation

In the configuration space:

2 constraints on motion
I f : position of the object.
I g: grasp of the object.
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Rapidly exploring Random Tree

qrand = shoot random config()
qnear = nearest neighbor(qrand , tree)
fe, fp = select next state(qnear )
qproj = project(qrand , fe)
qnew = extend(qnear , qproj , fp)
tree.insert node( (qnear , qnew , fp) )
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hpp-manipulation-corba

Provides tools to:
I read URDF files of robots and objects;
I create grasp contraints between a end-effector (robot) and

a handle (object);
I build the graph of constraints;
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Installation and documentation

Everything in https://humanoid-path-planner.github.io/hpp-doc
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Keep informed

I github notifications for issues related to individual
packages

HPP
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