
Introduction
Description of the software

Manipulation planning

Humanoid Path Planner

Florent Lamiraux and Joseph Mirabel

CNRS-LAAS, Toulouse, France

HPP

Introduction
Description of the software

Manipulation planning

Humanoid Path Planner

Introduction

Description of the software

Manipulation planning

HPP

Introduction
Description of the software

Manipulation planning

Outline

Introduction

Description of the software

Manipulation planning

HPP

Introduction
Description of the software

Manipulation planning

Path Planning

Given
I A robot (kinematic chain),
I obstacles,
I constraints (non-holonomic, manipulation),
I an initial configuration and
I goal configurations,

Compute a collision-free path satisfying the constraints from
the initial configuration to a goal configuration.

HPP

Introduction
Description of the software

Manipulation planning

Path Planning

Given
I A robot (kinematic chain),
I obstacles,
I constraints (non-holonomic, manipulation),
I an initial configuration and
I goal configurations,

Compute a collision-free path satisfying the constraints from
the initial configuration to a goal configuration.

HPP

Introduction
Description of the software

Manipulation planning

Path Planning

Given
I A robot (kinematic chain),
I obstacles,
I constraints (non-holonomic, manipulation),
I an initial configuration and
I goal configurations,

Compute a collision-free path satisfying the constraints from
the initial configuration to a goal configuration.

HPP

Introduction
Description of the software

Manipulation planning

Path Planning

Given
I A robot (kinematic chain),
I obstacles,
I constraints (non-holonomic, manipulation),
I an initial configuration and
I goal configurations,

Compute a collision-free path satisfying the constraints from
the initial configuration to a goal configuration.

HPP

Introduction
Description of the software

Manipulation planning

Path Planning

Given
I A robot (kinematic chain),
I obstacles,
I constraints (non-holonomic, manipulation),
I an initial configuration and
I goal configurations,

Compute a collision-free path satisfying the constraints from
the initial configuration to a goal configuration.

HPP

Introduction
Description of the software

Manipulation planning

Historical perspective

I 1998: Move3D,
I 2001: Creation of Kineo-CAM, transfer of Move3D,
I 2006: Release of KineoWorks-2, development of HPP

based on KineoWorks-2,
I 2013: kineo-CAM is bought by Siemens,
I December 2013: development of HPP open-source.

HPP

Introduction
Description of the software

Manipulation planning

Historical perspective

I 1998: Move3D,
I 2001: Creation of Kineo-CAM, transfer of Move3D,
I 2006: Release of KineoWorks-2, development of HPP

based on KineoWorks-2,
I 2013: kineo-CAM is bought by Siemens,
I December 2013: development of HPP open-source.

HPP

Introduction
Description of the software

Manipulation planning

Historical perspective

I 1998: Move3D,
I 2001: Creation of Kineo-CAM, transfer of Move3D,
I 2006: Release of KineoWorks-2, development of HPP

based on KineoWorks-2,
I 2013: kineo-CAM is bought by Siemens,
I December 2013: development of HPP open-source.

HPP

Introduction
Description of the software

Manipulation planning

Historical perspective

I 1998: Move3D,
I 2001: Creation of Kineo-CAM, transfer of Move3D,
I 2006: Release of KineoWorks-2, development of HPP

based on KineoWorks-2,
I 2013: kineo-CAM is bought by Siemens,
I December 2013: development of HPP open-source.

HPP

Introduction
Description of the software

Manipulation planning

Historical perspective

I 1998: Move3D,
I 2001: Creation of Kineo-CAM, transfer of Move3D,
I 2006: Release of KineoWorks-2, development of HPP

based on KineoWorks-2,
I 2013: kineo-CAM is bought by Siemens,
I December 2013: development of HPP open-source.

HPP

Introduction
Description of the software

Manipulation planning

Main features

I Numerical constraints at the core of the model
I quasi-static equilibrium
I object grasp and placement
I explicit and implicit constraints

I no a priori discretization of paths
I evaluation calls constraint projection
I constrained paths need to be checked for continuity (class

hpp::core::PathProjector)

HPP

Introduction
Description of the software

Manipulation planning

Main features

I Numerical constraints at the core of the model
I quasi-static equilibrium
I object grasp and placement
I explicit and implicit constraints

I no a priori discretization of paths
I evaluation calls constraint projection
I constrained paths need to be checked for continuity (class

hpp::core::PathProjector)

HPP

Introduction
Description of the software

Manipulation planning

Outline

Introduction

Description of the software

Manipulation planning

HPP

Introduction
Description of the software

Manipulation planning

Overview of the architecture

Modular: collection of packages
I installation and dependencies managed by cmake and a

git submodule: git://github.com/jrl-umi3218/jrl-cmakemodules.git,
I programmed in C++,
I controlled via python

HPP

Introduction
Description of the software

Manipulation planning

Overview of the architecture

Modular: collection of packages
I installation and dependencies managed by cmake and a

git submodule: git://github.com/jrl-umi3218/jrl-cmakemodules.git,
I programmed in C++,
I controlled via python

HPP

Introduction
Description of the software

Manipulation planning

Overview of the architecture

Modular: collection of packages
I installation and dependencies managed by cmake and a

git submodule: git://github.com/jrl-umi3218/jrl-cmakemodules.git,
I programmed in C++,
I controlled via python

HPP

Introduction
Description of the software

Manipulation planning

Overview of the architecture

Modular: collection of packages
I installation and dependencies managed by cmake and a

git submodule: git://github.com/jrl-umi3218/jrl-cmakemodules.git,
I programmed in C++,
I controlled via python

HPP

Introduction
Description of the software

Manipulation planning

Overview of the architecture

HPP

Introduction
Description of the software

Manipulation planning

Software Development Kit
Packages implementing the core infrastructure
I Kinematic chain with geometry

I pinocchio: implementation of kinematic chain with
geometry,

I tree of joints (Rotation, Translation, SE3: vector +
unit-quaternions),

I moving hpp::fcl::CollisionObjects,
I forward kinematics,
I joint Jacobians,
I center of mass and Jacobian,
I URDF, SRDF parser.

I Numerical constraints
I hpp-constraints: numerical constraints

I implicit f (q) = (≤)0,
I explicit qout = f (qin),
I numerical solvers based on Newton-Raphson.

HPP

Introduction
Description of the software

Manipulation planning

Software Development Kit
Packages implementing the core infrastructure
I Kinematic chain with geometry

I pinocchio: implementation of kinematic chain with
geometry,

I tree of joints (Rotation, Translation, SE3: vector +
unit-quaternions),

I moving hpp::fcl::CollisionObjects,
I forward kinematics,
I joint Jacobians,
I center of mass and Jacobian,
I URDF, SRDF parser.

I Numerical constraints
I hpp-constraints: numerical constraints

I implicit f (q) = (≤)0,
I explicit qout = f (qin),
I numerical solvers based on Newton-Raphson.

HPP

Introduction
Description of the software

Manipulation planning

Newton-Raphson algorithm

Constraints
I quasi-static

equilibrium (15)
I both hands hold the

placard (10)

Goal: Generate a configuration satisfying the constraints.

HPP

Introduction
Description of the software

Manipulation planning

Newton-Raphson algorithm

Constraints
I quasi-static

equilibrium (15)
I both hands hold the

placard (10)

Shoot random configuration

HPP

Introduction
Description of the software

Manipulation planning

Newton-Raphson algorithm

Constraints
I quasi-static

equilibrium (15)
I both hands hold the

placard (10)

Solve linearized system

HPP

Introduction
Description of the software

Manipulation planning

Newton-Raphson algorithm

Constraints
I quasi-static

equilibrium (15)
I both hands hold the

placard (10)

Solve linearized system

HPP

Introduction
Description of the software

Manipulation planning

Newton-Raphson algorithm

Constraints
I quasi-static

equilibrium (15)
I both hands hold the

placard (10)

Solve linearized system

HPP

Introduction
Description of the software

Manipulation planning

Newton-Raphson algorithm

Constraints
I quasi-static

equilibrium (15)
I both hands hold the

placard (10)

Solve linearized system

HPP

Introduction
Description of the software

Manipulation planning

Newton-Raphson algorithm

Constraints
I quasi-static

equilibrium (15)
I both hands hold the

placard (10)

Solve linearized system

HPP

Introduction
Description of the software

Manipulation planning

Newton-Raphson algorithm

Constraints
I quasi-static

equilibrium (15)
I both hands hold the

placard (10)

Solve linearized system

HPP

Introduction
Description of the software

Manipulation planning

Newton-Raphson algorithm

Constraints
I quasi-static

equilibrium (15)
I both hands hold the

placard (10)

Result: a configuration that satisfies the constraints (up to given threshold).

HPP

Introduction
Description of the software

Manipulation planning

Software Development Kit

Packages implementing the core infrastructure
I Path planning

I hpp-core: definition of basic classes,
I path planning problem,
I path planning solvers (RRT),
I path optimizers (random shortcut),
I path projector (random shortcut),
I path validation (discretized and continuous),
I steering methods (straight interpolation)

HPP

Introduction
Description of the software

Manipulation planning

Extensions

Packages implementing other algorithms via plugins in
hpp-corbaserver

I hpp-manipulation: manipulation planning (see next
section),

I any extension for your application.

HPP

Introduction
Description of the software

Manipulation planning

Extensions

Packages implementing other algorithms via plugins in
hpp-corbaserver

I hpp-manipulation: manipulation planning (see next
section),

I any extension for your application.

HPP

Introduction
Description of the software

Manipulation planning

Python control

hpp-corbaserver: python scripting through CORBA
I embed hpp-core into a CORBA server and expose

services through 3 idl interfaces:
I Robot load and initializes robot,
I Obstacle load and build obstacles,
I Problem define and solve problem.

I Implement python classes to help user call CORBA
services
I Robot automatize robot loading,
I ProblemSolver definition problem helper.

HPP

Introduction
Description of the software

Manipulation planning

Python control

hpp-corbaserver: python scripting through CORBA
I embed hpp-core into a CORBA server and expose

services through 3 idl interfaces:
I Robot load and initializes robot,
I Obstacle load and build obstacles,
I Problem define and solve problem.

I Implement python classes to help user call CORBA
services
I Robot automatize robot loading,
I ProblemSolver definition problem helper.

HPP

Introduction
Description of the software

Manipulation planning

Python control

Extensions through plugins in hpp-corbaserver

I hpp-manipulation-corba: control of manipulation
planning specific classes and algorithms.

HPP

Introduction
Description of the software

Manipulation planning

Visualization through gepetto-gui

Implemented by package hpp-gepetto-viewer.

HPP

Introduction
Description of the software

Manipulation planning

Outline

Introduction

Description of the software

Manipulation planning

HPP

Introduction
Description of the software

Manipulation planning

Manipulation

Class of problem containing:
I A robot: actuated DOFs
I Objects: unactuated DOFs

A solution will be a succession of motion of two types:
I The robot moves without constraints. Objects do not move.
I The robot moves while grasping the object.

HPP

Introduction
Description of the software

Manipulation planning

Manipulation

Class of problem containing:
I A robot: actuated DOFs
I Objects: unactuated DOFs

A solution will be a succession of motion of two types:
I The robot moves without constraints. Objects do not move.
I The robot moves while grasping the object.

HPP

Introduction
Description of the software

Manipulation planning

Manipulation

2 states:

Not holding

Object
fixed

Holding

Grasp

Ungrasp

Keep the
grasp

HPP

Introduction
Description of the software

Manipulation planning

Manipulation

4 transitions:

Not holdingObject
fixed

Holding

Grasp

Ungrasp

Keep the
grasp

HPP

Introduction
Description of the software

Manipulation planning

Manipulation

4 transitions:

Not holdingObject
fixed

Holding

Grasp

Ungrasp

Keep the
grasp

HPP

Introduction
Description of the software

Manipulation planning

Manipulation

4 transitions:

Not holdingObject
fixed

Holding

Grasp

Ungrasp

Keep the
grasp

HPP

Introduction
Description of the software

Manipulation planning

Constraint
Definition
A function f ∈ D1(C,Rm).

Foliation
A leaf of a constraint f is defined by:

Lf0(f) = {q ∈ C|f (q) = f0}

where f0 is called the right hand side of the constraint.

Projection
Using a Newton Descent algorithm:

qrand |f (qrand) 6= f0 ⇒ qproj |f (qproj) = f0

HPP

Introduction
Description of the software

Manipulation planning

Constraint
Definition
A function f ∈ D1(C,Rm).

Foliation
A leaf of a constraint f is defined by:

Lf0(f) = {q ∈ C|f (q) = f0}

where f0 is called the right hand side of the constraint.

Projection
Using a Newton Descent algorithm:

qrand |f (qrand) 6= f0 ⇒ qproj |f (qproj) = f0

HPP

Introduction
Description of the software

Manipulation planning

Constraint
Definition
A function f ∈ D1(C,Rm).

Foliation
A leaf of a constraint f is defined by:

Lf0(f) = {q ∈ C|f (q) = f0}

where f0 is called the right hand side of the constraint.

Projection
Using a Newton Descent algorithm:

qrand |f (qrand) 6= f0 ⇒ qproj |f (qproj) = f0

HPP

Introduction
Description of the software

Manipulation planning

Constraint

Two types of constraints:

Configuration
Only one leaf is interesting: L0(f).

Motion
A leaf also represents reachability space.

HPP

Introduction
Description of the software

Manipulation planning

Foliation

In the configuration space:

2 constraints on motion
I f : position of the object.
I g: grasp of the object.

HPP

Introduction
Description of the software

Manipulation planning

Constraint graph

Lf

f

Lg

f

f

g

HPP

Introduction
Description of the software

Manipulation planning

Constraint graph

Lff Lg

f

f

g

HPP

Introduction
Description of the software

Manipulation planning

Rapidly exploring Random Tree

qrand = shoot random config()
qnear = nearest neighbor(qrand , tree)
fe, fp = select next state(qnear)
qproj = project(qrand , fe)
qnew = extend(qnear , qproj , fp)
tree.insert node((qnear , qnew , fp))

HPP

Introduction
Description of the software

Manipulation planning

Rapidly exploring Random Tree

qrand = shoot random config()
qnear = nearest neighbor(qrand , tree)
fe, fp = select next state(qnear)
qproj = project(qrand , fe)
qnew = extend(qnear , qproj , fp)
tree.insert node((qnear , qnew , fp))

HPP

Introduction
Description of the software

Manipulation planning

Rapidly exploring Random Tree

qrand = shoot random config()
qnear = nearest neighbor(qrand , tree)
fe, fp = select next state(qnear)
qproj = project(qrand , fe)
qnew = extend(qnear , qproj , fp)
tree.insert node((qnear , qnew , fp))

HPP

Introduction
Description of the software

Manipulation planning

Rapidly exploring Random Tree

qrand = shoot random config()
qnear = nearest neighbor(qrand , tree)
fe, fp = select next state(qnear)
qproj = project(qrand , fe)
qnew = extend(qnear , qproj , fp)
tree.insert node((qnear , qnew , fp))

HPP

Introduction
Description of the software

Manipulation planning

Rapidly exploring Random Tree

qrand = shoot random config()
qnear = nearest neighbor(qrand , tree)
fe, fp = select next state(qnear)
qproj = project(qrand , fe)
qnew = extend(qnear , qproj , fp)
tree.insert node((qnear , qnew , fp))

HPP

Introduction
Description of the software

Manipulation planning

Rapidly exploring Random Tree

qrand = shoot random config()
qnear = nearest neighbor(qrand , tree)
fe, fp = select next state(qnear)
qproj = project(qrand , fe)
qnew = extend(qnear , qproj , fp)
tree.insert node((qnear , qnew , fp))

HPP

Introduction
Description of the software

Manipulation planning

hpp-manipulation-corba

Provides tools to:
I read URDF files of robots and objects;
I create grasp contraints between a end-effector (robot) and

a handle (object);
I build the graph of constraints;

HPP

Introduction
Description of the software

Manipulation planning

hpp-manipulation-corba

Provides tools to:
I read URDF files of robots and objects;
I create grasp contraints between a end-effector (robot) and

a handle (object);
I build the graph of constraints;

HPP

Introduction
Description of the software

Manipulation planning

hpp-manipulation-corba

Provides tools to:
I read URDF files of robots and objects;
I create grasp contraints between a end-effector (robot) and

a handle (object);
I build the graph of constraints;

HPP

Introduction
Description of the software

Manipulation planning

Installation and documentation

Everything in https://humanoid-path-planner.github.io/hpp-doc

HPP

https://humanoid-path-planner.github.io/hpp-doc

Introduction
Description of the software

Manipulation planning

Keep informed

I github notifications for issues related to individual
packages

HPP

	Introduction
	Description of the software
	Manipulation planning

